플래그 설명
HISTCMP_CORREL 상관관계
\(d(H_1,\ H_2) = \frac{\sum_I (H_1(I) - \bar{H_1}) (H_2(I) - \bar{H_2})}{\sqrt{\sum_I(H_1(I) - \bar{H_1})^2 \sum_I(H_2(I) - \bar{H_2})^2}}\)
\(\bar{H_k} = \frac{1}{N} \sum _J H_k(J)\)
\(N\)은 히스토그램 빈(Bin) 수
HISTCMP_CHISQR 카이제곱 검정
\(d(H_1,\ H_2) = \sum _I \frac{\left(H_1(I)-H_2(I)\right)^2}{H_1(I)}\)
HISTCMP_INTERSECT 교집합
\(d(H_1,\ H_2) = \sum _I \min (H_1(I), H_2(I))\)
HISTCMP_BHATTACHARYYA Bhattacharyya 거리(헬린저 거리)
\(d(H_1,\ H_2) = \sqrt{1 - \frac{1}{\sqrt{\bar{H_1} \bar{H_2} N^2}} \sum_I \sqrt{H_1(I) \cdot H_2(I)}}\)
HISTCMP_HELLINGER 헬린저 거리
\(d(H_1,\ H_2) = \sqrt{1 - \frac{1}{\sqrt{\bar{H_1} \bar{H_2} N^2}} \sum_I \sqrt{H_1(I) \cdot H_2(I)}}\)
HISTCMP_CHISQR_ALT 카이제곱 검정 대안
\(d(H_1,\ H_2) = 2 * \sum _I \frac{\left(H_1(I)-H_2(I)\right)^2}{H_1(I)+H_2(I)}\)
HISTCMP_KL_DIV 쿨백-라이블러 발산
\(d(H_1,\ H_2) = \sum _I H_1(I) \log \left(\frac{H_1(I)}{H_2(I)}\right)\)
플래그 설명
HistCompMethods.Correl 상관관계
\(d(H_1,\ H_2) = \frac{\sum_I (H_1(I) - \bar{H_1}) (H_2(I) - \bar{H_2})}{\sqrt{\sum_I(H_1(I) - \bar{H_1})^2 \sum_I(H_2(I) - \bar{H_2})^2}}\)
\(\bar{H_k} = \frac{1}{N} \sum _J H_k(J)\)
\(N\)은 히스토그램 빈(Bin) 수
HistCompMethods.Chisqr 카이제곱 검정
\(d(H_1,\ H_2) = \sum _I \frac{\left(H_1(I)-H_2(I)\right)^2}{H_1(I)}\)
HistCompMethods.Intersect 교집합
\(d(H_1,\ H_2) = \sum _I \min (H_1(I), H_2(I))\)
HistCompMethods.Bhattacharyya Bhattacharyya 거리(헬린저 거리)
\(d(H_1,\ H_2) = \sqrt{1 - \frac{1}{\sqrt{\bar{H_1} \bar{H_2} N^2}} \sum_I \sqrt{H_1(I) \cdot H_2(I)}}\)
HistCompMethods.Hellinger 헬린저 거리
\(d(H_1,\ H_2) = \sqrt{1 - \frac{1}{\sqrt{\bar{H_1} \bar{H_2} N^2}} \sum_I \sqrt{H_1(I) \cdot H_2(I)}}\)
HistCompMethods.ChisqrAlt 카이제곱 검정 대안
\(d(H_1,\ H_2) = 2 * \sum _I \frac{\left(H_1(I)-H_2(I)\right)^2}{H_1(I)+H_2(I)}\)
HistCompMethods.KLDiv 쿨백-라이블러 발산
\(d(H_1,\ H_2) = \sum _I H_1(I) \log \left(\frac{H_1(I)}{H_2(I)}\right)\)
플래그 설명
cv2.HISTCMP_CORREL 상관관계
\(d(H_1,\ H_2) = \frac{\sum_I (H_1(I) - \bar{H_1}) (H_2(I) - \bar{H_2})}{\sqrt{\sum_I(H_1(I) - \bar{H_1})^2 \sum_I(H_2(I) - \bar{H_2})^2}}\)
\(\bar{H_k} = \frac{1}{N} \sum _J H_k(J)\)
\(N\)은 히스토그램 빈(Bin) 수
cv2.HISTCMP_CHISQR 카이제곱 검정
\(d(H_1,\ H_2) = \sum _I \frac{\left(H_1(I)-H_2(I)\right)^2}{H_1(I)}\)
cv2.HISTCMP_INTERSECT 교집합
\(d(H_1,\ H_2) = \sum _I \min (H_1(I), H_2(I))\)
cv2.HISTCMP_BHATTACHARYYA Bhattacharyya 거리(헬린저 거리)
\(d(H_1,\ H_2) = \sqrt{1 - \frac{1}{\sqrt{\bar{H_1} \bar{H_2} N^2}} \sum_I \sqrt{H_1(I) \cdot H_2(I)}}\)
cv2.HISTCMP_HELLINGER 헬린저 거리
\(d(H_1,\ H_2) = \sqrt{1 - \frac{1}{\sqrt{\bar{H_1} \bar{H_2} N^2}} \sum_I \sqrt{H_1(I) \cdot H_2(I)}}\)
cv2.HISTCMP_CHISQR_ALT 카이제곱 검정 대안
\(d(H_1,\ H_2) = 2 * \sum _I \frac{\left(H_1(I)-H_2(I)\right)^2}{H_1(I)+H_2(I)}\)
cv2.HISTCMP_KL_DIV 쿨백-라이블러 발산
\(d(H_1,\ H_2) = \sum _I H_1(I) \log \left(\frac{H_1(I)}{H_2(I)}\right)\)


요약(Summary)

히스토그램 비교 방식을 설정합니다.